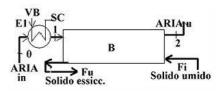
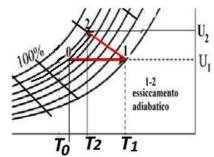
ESERCIZI DI ESSICCAMENTO – vers#1


(per lo svolgimento è necessario l'uso del diagramma Mollier)


ES N°1 - MONOSTADIO - TEMA ESAME 1983 *

Un essiccatore ad armadio a uno stadio con preriscaldamento funziona nelle seguenti condizioni:

- -solido umido da trattare 300Kg/h con umidità iniziale del materiale 20% e finale 4 % peso;
- -aria umida in ingresso al preriscaldamento (0) e temperatura T=15°C e U.rel 70%;
- -aria uscente dal preriscaldamento (1) a T=70°C
- -aria uscente (2) dall'essiccamento [adiabatico] a umidità rel. del 80%;
- -vapore riscaldante saturo secco a 2 ata e coeff.glob.U=200kcal/m2h°C; determinare:

1-la portata di aria secca all'ingresso; 2-la portata di solido uscente e la quantità totale di acqua evaporata; 3- la temperatura di uscita dell'aria dallo stadio essiccante; 4 la quantità di energia richiesta per il preriscaldamento dell'aria, la portata di vapore riscaldante, la superficie di scambio; 5-disegnare sul diagramma igrometrico il processo di essiccamento in esame.

Soluzione:

1-PUNTI del DIAGRAMMA:

p.to (0): U.Rel. 70%; $T_0=15^{\circ}$ C; $C_{umido}=0.24$ kcal/°C kg_{A.S.}; \rightarrow U₀= $U_1=0.0075$ kg_{VAP}/kg_{A.S.}; $T_1=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. 80%; p.to (2): U.Rel. $80\% \rightarrow T_2=32.5^{\circ}$ C; $U_2=0.0215$ kg_{VAP}/kg_{A.S.}; $T_1=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $80\% \rightarrow T_2=32.5^{\circ}$ C; $U_2=0.0215$ kg_{VAP}/kg_{A.S.}; $T_1=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_1=0.0075$ kg_{VAP}/kg_{A.S.}; $T_2=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_2=0.0075$ kg_{VAP}/kg_{A.S.}; $T_3=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_1=0.0075$ kg_{VAP}/kg_{A.S.}; $T_2=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_2=0.0075$ kg_{VAP}/kg_{A.S.}; $T_3=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_2=0.0075$ kg_{VAP}/kg_{A.S.}; $T_3=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_3=0.0075$ kg_{VAP}/kg_{A.S.}; $T_3=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_3=0.0075$ kg_{VAP}/kg_{A.S.}; $T_3=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_3=0.0075$ kg_{VAP}/kg_{A.S.}; $T_3=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_3=0.0075$ kg_{VAP}/kg_{A.S.}; $T_3=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_3=0.0075$ kg_{VAP}/kg_{A.S.}; $T_3=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_3=0.0075$ kg_{VAP}/kg_{A.S.}; $T_3=70^{\circ}$ C; si traccia la retta raffredd.adiabatico dal p.to 1 alla curva a Urel. $T_3=0.0075$ kg_{A.S.}; $T_3=70^{\circ}$ C; $T_3=7$

Fi=300 Kg umido entrante (i)	H ₂ O(i) 20% =300 x 0,20=60 KgH2O SSsec.80% =300 x 0,80=240 KgSS	
Fu solido umido	H ₂ O (u)= 4%	\rightarrow Fu =240/0,96 =250 Kg solido umido uscente
uscente (u)	SSsec. 96% =240 Kg	\rightarrow H ₂ 0 (u)= 250 − 240 = 10 KgH2O \rightarrow H2Oevap =60-10=50kg

2-BILANCIO ESSICCATORE: portate di aria

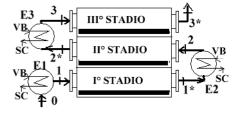
Ga.s. $(U_2-U_1)=(F_iX_i-F_uX_u)=50 \text{ kg/h}; \rightarrow \text{Ga.s}=50/(0,0215-0,0075)=3571 \text{ Kg}_{A.S.}/h; \rightarrow \text{G}_{a.umida}=\text{Ga.s.}+\text{Ga.s.}(U_1)=3598 \text{ kg/h} \text{ aria umida.}$ 3-BILANCI AL PRERISCALDATORE E1:

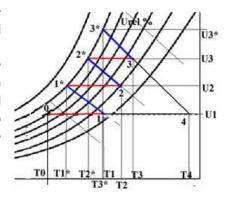
 \rightarrow **Q**_{E1} = G_{A.S.} C_U (T₁-T₀)= 3571x 0,24x(70-15) =47137 kcal/h;

VAPORE: p=2 ata;dalla tab.vap.sat.sec. \rightarrow T_{VB} =119,6°C; H_{EVAP} = 527 kcal/kg; \rightarrow VB= Q_{EI}/H_{EVAP} =89,4 kg/h portata vapore;

 \mathbf{Q}_{E1} =U Sup. ΔT_{ML} ; ΔT_{ML} = $(\Delta T_1 - \Delta T_2)$ In $(\Delta T_1 / \Delta T_2)$; ΔT_1 =119,6-15=104,6°; ΔT_2 =119,6-70=49,6°;

 \rightarrow ΔT_{ML} =73,7°C; \rightarrow Sup.=Q _{E1}/(U. ΔT_{ML})=3,2 m2.


ES N°2 - MULTISTADIO - TEMA ESAME 1984 *


Un essiccatore ad armadio a tre stadi con riscaldamenti intermedi e preriscaldamento funziona nelle seguenti condizioni:

- -solido umido da trattare 500 Kg/h con umidità iniziale del materiale 30% e finale 10 % in peso;
- -aria in ingresso al preriscaldamento con temperatura T=20°C e Urel.70%;
- -aria uscente dall'ultimo stadio a T 40°C e umidità del 90%;

Nell'ipotesi che (a) l'aria asporti da ogni stadio la stessa quantità di acqua e (b) che all'uscita di ogni stadio abbia umidità relativa del 90%, supponendo le trasformazioni adiabatiche, determinare:

1-la portata di solido umido finale, di acqua evaporata; 2- la portata di aria secca ; 3- le temperature di entrata e uscita da ogni stadio; 4 la quantità totale di energia richiesta per il riscaldamento dell'aria nei vari stadi; 5-disegnare sul diagramma igrometrico il processo di essiccamento in esame; 6- determinare, se funzionante con un unico preriscaldamento, la temperatura finale del preriscaldamento e la quantità di calore necessaria.

Soluzione: [riscaldamenti: 0//1; 1*//2; 2*//3; essiccamenti: 1//1*; 2//2*; 3//3*]

1-PUNTI del DIAGRAMMA: [vedi appendice 1]

p.to (0): U.Rel. 70%; T_0 =20°C; \rightarrow U_0 = U_1 = 0,011 $kg_{VAP}/kg_{A.S.}$; p.to (3*): $T3^*$ =40°C; U.Rel. 90%; \rightarrow $U3^*$ =0,044 $kg_{VAP}/kg_{A.S.}$; (U3*-U1)/3stadi= (0,044-0,011)/3stadi=0,011 $kg_{VAP}/kg_{A.S.}$; \rightarrow $U2^*$ =0,011+0,011=0,022..; $U3^*$ =0,022+0,011=0,033 $U3^*$ =0,033 $U3^*$ =0,

→si disegna quindi il grafico del processo a 3 stadi, e si ricavano le relative temperature:

T0=20°;T1=53°; T1*=28°;T2=60°; T2*=36°;T3=67°; T3*= 40°C.

2- BILANCIO DI MATERIA:

Fi=500 Kg/h umido entrante (i)	H ₂ O(i) 30% =500 x 0,30=150 KgH2O SSsec.70% =500 x 0,70=350 KgSS	
Fu solido umido	H ₂ O (u)= 10%	\rightarrow Fu =350/0,90 =389 Kg/h solido umido uscente
uscente (u)	SSsec. 90% =350 Kg	\rightarrow H ₂ 0 (u)= 389− 350 = 39 KgH2O \rightarrow H2Oevap =150-39=111kg/h

3-BILANCIO ESSICCATORE: portata di aria secca

Ga.s.(U3*-U1) = $(F_i X_i - F_u X_u)$ = 111 kg/h; \rightarrow Ga.s=111/(0,044-0,011)=3364 Kg_{A.S.} /h;

4-BILANCI DI ENERGIA:

dal diagramma: a U1 \rightarrow C_{U1}= 0,24 kcal/°C kg_{A.S.} ;a U2 \rightarrow C_{U2}= 0,246 kcal/°C kg_{A.S.}; a U3 \rightarrow C_{U3}= 0,252 kcal/°C kg_{A.S.}; quantità di calore per riscaldamento aria:

- $\rightarrow \mathbf{Q}_{E1} = G_{A.S.} \ C_{U1} \ (T1-T0) = 26643 \ kcal/h; \ \mathbf{Q}_{E2} = G_{A.S.} \ C_{U2} \ (T2-T1*) = 26481 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ C_{U3} \ (T3-T2*) = 26280 \ kcal/h; \ \mathbf{Q}_{E3} = G_{A.S.} \ \mathbf{Q}_{E3} = \mathbf{Q}_{A.S.} \ \mathbf{Q}_{E3} =$
- \rightarrow Qtotale= 79404 kcal/h;
- 5- RISCALDAMENTO IN UNA SOLA APPARECCHIATURA:

dal diagramma: p.to (4): \rightarrow **T4**=125°C; Q*= $G_{A.S.}$ C_{U1} (T4-T0) = 84773 kcal/h; maggiore q.calore richiesta!

ES N°3 - MULTISTADIO - *

Un essiccatore a tre stadi con riscaldamenti intermedi e preriscaldamento funziona nelle seguenti condizioni:

- -solido umido da trattare 200 Kg/h con umidità iniziale del materiale 20% e finale 5 % in peso;
- -aria in ingresso al preriscaldamento con temperatura T=20°C e Urel.70%;
- -aria uscente dall'ultimo stadio a T 39°C e umidità del 90%;

Nell'ipotesi che (a) l'aria asporti da ogni stadio la stessa quantità di acqua e (b) che all'uscita di ogni stadio abbia umidità relativa del 90%, supponendo le trasformazioni adiabatiche, determinare:

1-la portata di solido umido finale, di acqua evaporata; 2- la portata di aria secca ; 3- le temperature di entrata e uscita da ogni stadio; 4 disegnare sul diagramma igrometrico il processo di essiccamento in esame.

Soluzione: [riscaldamenti: 0//1; 1*//2; 2*//3; essiccamenti: 1//1*; 2//2*; 3//3*]

1-PUNTI del DIAGRAMMA: [vedi appendice 1]

p.to (0): U.Rel. 70%; $T_0=20$ °C; $\rightarrow U_0=U_1=0.011 kg_{VAP}/kg_{A.S.}$; p.to (3*):**T3***=39°C; U.Rel. 90%;

- \rightarrow **U3***=0,042 kg_{VAP}/kg_{A.S.}; (U3*-U1)/3stadi=(0,042-0,011)/3stadi=0,01 kg_{VAP}/kg_{A.S.};
- \rightarrow **U2**=0,011+0,01=0,021..;**U3**=0,021+0,01=0,031 kg_{VAP}/kg_{A.S.};
- →si disegna quindi il grafico del processo a 3 stadi, e si ricavano le temperature seguenti:

T0=20°; T1*=28°; T2*=34°; T3*= 39°C.

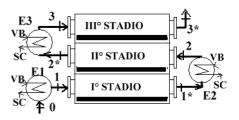
2- BILANCIO DI MATERIA:

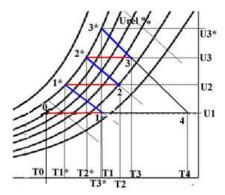
Fi=200 Kg/h umido entrante (i)	H ₂ O(i) 20% =200 x 0,20=40 KgH2O SSsec.80% =200 x 0,80=160 KgSS	
Fu solido umido	H ₂ O (u)= 5%	\rightarrow Fu=160/0,95 =168,4 Kg/h solido umido uscente
uscente (u)	SSsec. 95% =160 Kg	\rightarrow H ₂ 0 (u)= 168,4− 160 = 8,4 KgH2O \rightarrow H2Oevap=40-8,4=31,6kg/h

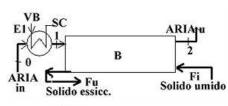
3-BILANCIO ESSICCATORE: portata di aria secca

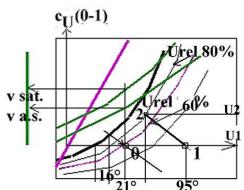
Ga.s.(U3*-U1) = $(F_i X_i - F_u X_u)$ = 31,6 kg/h; \rightarrow Ga.s=31,6/(0,042-0,011)=1019,4 Kg_{A.S.} /h;

ES.N°4 - MONOSTADIO *


Un essiccatore ad armadio a uno stadio con preriscaldamento funziona nelle seguenti condizioni:


- -solido umido da trattare 180 Kg/h con umidità iniziale del materiale 25%
- -aria umida in ingresso al preriscaldamento (0) con portata Gu=1000 Nm3/h,


temperatura T=21°C e T b.u.(bulbo umido) 16°C;


- -aria uscente dal preriscaldamento (1) a T=95°C
- -aria uscente dall'essiccamento (2) a umidità del 80%;

determinare: 1- le temperature di entrata e uscita dallo stadio e la portata di aria secca 2-la quantità totale di acqua evaporata; 3- la portata di solido umido uscente e la percentuale di umidità del solido uscente. 4- la quantità di energia richiesta per il riscaldamento dell'aria; 5-disegnare sul diagramma igrometrico il processo di essiccamento in esame.

Soluzione:

1-PUNTI del DIAGRAMMA:

p.to (0): **T0**=21°; Tb.u.=16°; \rightarrow **Urel(0)**=60%; \rightarrow U₀=**U**₁=0,01 kg_{VAP}/kg_{A.S.}; **T**₁=95°C;

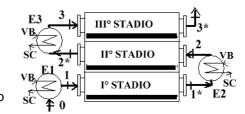
p.to (2): U.Rel. 80%; \rightarrow **T**₂=37,3°C; \rightarrow **U**₂=0,033 kg_{VAP}/kg_{A.S.};

calcolo volume umido dal diagr., noti i volumi specifici del p.to (0) (vedi fig.precedente), di aria secca v_{AS} e alla saturazione v_{SAT}:

 v_{AS} =0,83 m3/Kga.s.; v_{SAT} =0,86 m3/Kga.s.; \rightarrow $\mathbf{v_{U}}$ = v_{AS} + (v_{SAT} - v_{AS}) 0,60= 0,848 m3/Kga.s;

portate aria all'ingresso (0): $\mathbf{G}_{A.Umid}$ =1000 Nm3/h; aria secca $\rightarrow \mathbf{G}_{A.Sec}$ = $\mathbf{G}_{A.Umid}$./ \mathbf{v}_{U} = 1000/0,848 =1179,2 Kga.s./h

 $Ga.s.(U_2-U_1) = (F_iX_i - F_uX_u) = 27,12kg/h; \rightarrow \mathbf{H_2Oevap}.=27,12 kg/h \text{ quantità di acqua evaporata dal solido.}$

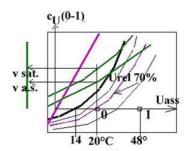

2-BILANCIO ESSICCATORE:

F(i)=180Kg/h	H ₂ O =180 x 0,25=45 Kg	$(F_i X_i - F_u X_u) = 27,12 \text{ kg/h}$
umido entrante	SSsec.=180 x 0,75=135 Kg	45 - H_2O usc. =27,12
F(u) solido umido uscente	→ H₂O usc = 17,88 kg/h= Fu Xu SSsec=135 kg/h	\rightarrow F(u)= 135 + 17,88 =152,88kg/h solido umido uscente \rightarrow % H ₂ O usc = 17,88/152,88 x100 =11,7%

3-BILANCI DI ENERGIA:

dal diagramma: a U1 \rightarrow C_{U1}= 0,242 kcal/°C kg_{A.S.};

 \rightarrow **Q**_{E1} = G_{A.S.} C_U (T₁-T₀)= 1179,2 x 0,242 x (95-21) =21117 kcal/h;



ES N°5 - MULTISTADIO - *

Un essiccatore ad armadio a tre stadi con riscaldamenti intermedi e preriscaldamento funziona nelle seguenti condizioni:

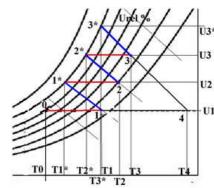
- -solido umido da trattare 180 Kg/h con umidità iniziale del materiale 25% e finale 11,8 % in peso;
- -aria in ingresso al preriscaldamento con temperatura T=20°C e T rugiada 14°C;
- -aria uscente dall'ultimo stadio a T 39°C e umidità del 80%; Nell'ipotesi che (a) l'aria asporti da ogni stadio la stessa quantità di acqua e (b) che all'uscita di ogni stadio abbia umidità relativa del 80%, supponendo le trasformazioni adiabatiche, determinare:

1-la portata di aria secca 2-1a quantità totale di acqua evaporata; 3- le temperature di entrata e uscita da ogni stadio; 4 la quantità totale di energia richiesta per il riscaldamento dell'aria nei vari stadi; 5-disegnare sul diagramma igrometrico il processo di essiccamento in esame.

Soluzione:

[riscaldamenti: 0//1; 1*//2; 2*//3; essiccamenti: 1//1*; 2//2*; 3//3*]

1-PUNTI dal DIAGRAMMA: [vedi appendice 1]


p.to (0): Trug=14°; T_0 =20°C; \rightarrow **U.Rel.**= 70% U_0 = U_1 = 0,01 $kg_{VAP}/kg_{A.S.}$; p.to (3*): **T3***=39°C; U.Rel. 80%;

 $\rightarrow \textbf{U3*} = 0,037 \text{ kg}_{\text{VAP}}/\text{kg}_{\text{A.S.}}; \qquad \text{(U3*-U1)/3stadi= (0,037-0,01)/3stadi=0,009 kg}_{\text{VAP}}/\text{kg}_{\text{A.S.}};$

 \rightarrow **U2**=0,01+0,009=0,019..;**U3**=0,019+0,009=0,028 kg_{VAP}/kg_{A.S.};

→si disegna quindi il grafico del processo a 3 stadi, e si ricavano le temperature seguenti:

T0=20°; T1=48°; T1*=28°; T2=55°; T2*=34,3°; T3=58,8°; T3*= 39°C.

2- BILANCIO DI MATERIA:

Fi=180 Kg umido entrante (i)	H ₂ O(i) 25% =180 x 0,25=45 KgH2O SSsec.80% =180 x 0,75=135 KgSS	
Fu solido umido	H ₂ O (u)= 11,8%	\rightarrow Fu =135/0,882 =153,1 Kg solido umido uscente
uscente (u)	SSsec. 88,2% =135Kg	\rightarrow H ₂ O (u)= 153,1− 135 = 18,1 KgH2O \rightarrow H2Oevap =45-18,1=26,9kg

3-BILANCIO ESSICCATORE: portata di aria secca

Ga.s.(U3*-U1) = $(F_i X_i - F_u X_u)$ = 26,9 kg/h; \rightarrow Ga.s=26,9/(0,037-0,01)=996,3 Kg_{A.S.} /h;

volume umido: dal diagr, volumi specifici (p.to 0) v_{AS} =0,83 m3/Kga.s.; v_{SAT} =0,85 m3/Kga.s.; $\rightarrow \mathbf{v_{U}}$ = v_{AS} + (v_{SAT} - v_{AS}) 0,70= 0,844 m3/Kga.s; ARIA UMIDA entrante (0): $\rightarrow \mathbf{G_{A.U.}} = G_{A.Sec.} \times v_{U} = 0,844 \times 996,3 = \mathbf{841} \text{ m3/h}.$

4-BILANCI DI ENERGIA:

dal diagramma: a U1 \rightarrow C_{U1}= 0,243 kcal/°C kg_{A.S.}; a U2 \rightarrow C_{U2}= 0,2465 kcal/°C kg_{A.S.}; a U3 \rightarrow C_{U3}= 0,25 kcal/°C kg_{A.S.}; quantità di calore per riscaldamento aria:

 $\rightarrow \! \boldsymbol{Q}_{E1} \! = G_{A.S.} \; C_{U1} \; \; (T1 \text{-} T0) = 6779 \; kcal/h; \; \boldsymbol{Q}_{E2} \! = G_{A.S.} \; C_{U2} \; \; (T2 \text{-} T1 *) = 6631 \; kcal/h; \; \boldsymbol{Q}_{E3} \! = G_{A.S.} \; C_{U3} \; \; (T3 \text{-} T2 *) = 6227 \; kcal/h; \; \boldsymbol{Q}_{E3} \! = G_{A.S.} \; \boldsymbol{C}_{U3} \; \; (T3 \text{-} T2 *) = 6227 \; kcal/h; \; \boldsymbol{Q}_{E3} \! = G_{A.S.} \; \boldsymbol{C}_{U3} \; \; \boldsymbol{C}_{U3} \; \; \boldsymbol{C}_{U3} \; \; \boldsymbol{C}_{U3} \;$

→Qtotale= 19637 kcal/h.

ES.6 - MULTISTADIO - *

Un essiccatore ad armadio a tre stadi con riscaldamenti intermedi e preriscaldamento funziona nelle seguenti condizioni:

- -solido umido da trattare 167 Kg/h con umidità iniziale del materiale 34,5% e finale 9 % in peso;
- -aria in ingresso al preriscaldamento con temperatura T=24°C e Urel.70%;
- -aria uscente dall'ultimo stadio a T 43°C e umidità del 90%;

Nell'ipotesi che (a) l'aria asporti da ogni stadio la stessa quantità di acqua e (b) che all'uscita di ogni stadio abbia umidità relativa del 90%, supponendo le trasformazioni adiabatiche, determinare:

1- la quantità di solido umido uscente e la quantità totale di acqua evaporata; 2- le temperature di entrata e uscita da ogni stadio; 3-la portata di aria secca e umida entrante; 4 la quantità totale di energia richiesta per il riscaldamento dell'aria nei vari stadi; 5-disegnare sul diagramma igrometrico il processo di essiccamento in esame.

3* Upt % U3*

2* U3

1* U2

U1

T0 T1* T2* T1 T3 T4

III° STADIO

II° STADIO

I° STADIO

Soluzione: [riscaldamenti: 0//1; 1*//2; 2*//3; essiccamenti: 1//1*; 2//2*; 3//3*]

1-PUNTI dal DIAGRAMMA: [vedi appendice 1]

p.to (0): $T_0=24$ °C; U.Rel.= 70% $\rightarrow U_0=U_1=0.013$ kg_{VAP}/kg_{A.S.};

p.to (3*): $\mathbf{T3}^*$ =43°C; U.Rel. 90%; \rightarrow $\mathbf{U3}^*$ =0,052 kg_{VAP}/kg_{A.S.}; (U3*-U1)/3stadi= (0,052-0,013)/3stadi=0,013 kg_{VAP}/kg_{A.S.};

 \rightarrow **U2**=0,013+0,013=0,026..; **U3**=0,026+0,013=0,039 kg_{VAP}/kg_{A.S.};

→si disegna quindi il grafico del processo a 3 stadi, e si ricavano le temperature seguenti:

T0=24°; T1=62°; T1*=31,4°; T2=67,5°; T2*=38°; T3=71,3°; T3*= 43°C.

2- BILANCIO DI MATERIA:

Fi=167 Kg/h umido	H ₂ O(i) 34,5% =167 x 0,345=57,6 KgH2O	
entrante (i)	SSsec.65,5% =167 x 0,655=109,4 KgSS	
Fu solido umido uscente (u)	H ₂ O (u)= 9% SSsec 91% =109,4Kg	\rightarrow Fu=109,4/0,91 =120,2 Kg/h solido umido uscente \rightarrow H ₂ 0 (u)= 120,2− 109,4 = 10,8 KgH2O \rightarrow H2Oevap=57,6 -10,8 =46,8 kg/h

3-BILANCIO ESSICCATORE: portata di aria secca

Ga.s.(U3*-U1) = $(F_i X_i - F_u X_u)$ = 46,8 kg/h; \rightarrow Ga.s=46,8/(0,052-0,013)=1200 Kg_{A.S.} /h;

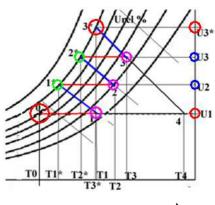
 $volume\ umido:\ dal\ diagr,\ volumi\ specifici\ (p.to\ 0)\ v_{AS} = 0.84\ m3/Kga.s.; v_{SAT} = 0.87\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{AS} + (v_{SAT} - v_{AS})\ 0.70 = 0.861\ m3/Kga.s.; \\ \rightarrow \textbf{v}_{U} = v_{U} =$

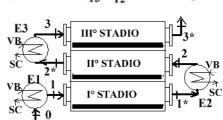
ARIA UMIDA entrante (0): \rightarrow **G**_{A.U.} = G_{A.Sec.} x v_U = 0,861 x 1200 = **1033,2** m3/h.

4-BILANCI DI ENERGIA:

dal diagramma: a U1 \rightarrow C_{U1}= 0,244 kcal/°C kg_{A.S.} ;a U2 \rightarrow C_{U2}= 0,249 kcal/°C kg_{A.S.}; a U3 \rightarrow C_{U3}= 0,256 kcal/°C kg_{A.S.}; quantità di calore per riscaldamento aria:

 \rightarrow **Q**_{E1}= G_{A.S.} C_{U1} (T1-T0) = 11126 kcal/h; **Q**_{E2} = G_{A.S.} C_{U2} (T2-T1*) = 10787 kcal/h; **Q**_{E3} = G_{A.S.} C_{U3} (T3-T2*) = 10230 kcal/h;


 \rightarrow Qtotale= 32143 kcal/h.


APPENDICE1-: PROCEDIMENTO PER DETERMINARE I PUNTI SUL DIAGRAMMA PER <u>ESSICCATORE A 3 EFFETTI</u>:

- →IPOTESI: nell'ipotesi che l'aria asporti da ogni stadio la stessa quantità di acqua e che all'uscita di ogni stadio abbia umidità relativa indicata (p.es.del 80%), supponendo le trasformazioni adiabatiche:
- a-si tracciano sul diagr. i punti noti (0) e (3*), ricavando U1 e U3* (umidità assoluta);
- b-si divide per 3 l'intervallo U3*-U1, ricavando i p.ti U2 e U3;
- c-si tracciano le rette orizzontali da U2 e U3 fino alla curva a Umid. rel. finale nota (p.es.80%), ricavando i punti 1* e 2*;
- d-si tracciano le rette di essiccamento adiabatico, parallele alle rette di inclinazione nota, ricavando i p.ti 3, 2, 1 dall'incrocio con le rette orizzontali per U3, U2, U1;
- → le rette 0-1, 1*-2, 2*-3, rappresentano i riscaldamenti dell'aria prima di entrare negli stadi;
- \rightarrow le inclinate 1-1*, 2-2*, 3-3* rappresentano le fasi di essiccamento adiabatico.
- **e** in alternativa si può conoscere la quantità di acqua assorbita dall'aria per Kg aria secca, che sommata all'Umidità assoluta U1, nota, mi permette di ricavare U3*, e quindi seguire il procedimento dal punto b-.

ES.: Ga.sec.= 1019 kg/h; acqua evaporata dal solido = 31,6kg/h; N°3 stadi; U1=0,011 kgvap/kga.s.; q.acqua assorb per kg/a.s=31,6/1019=0,031; \rightarrow quantità acqua/stadio: 0,031/3= 0,010 kg/kg;

 $\rightarrow \text{U1=0,011Kg7kg; U2=0,011+0,01=0,021kg/kg; U3=0,021+0,01=0,031; U3*=0,031+0,010=0,042 kg/kg.}$

